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Rollout a Mental Model of their Interlocutors

OVERVIEW

Motivation: “To plan ahead we must simulate the world”
GuessWhich: Cooperative image guessing game (Das &
Kottur et al. 2017)

Goal: Select “pragmatic” questions at inference, via
dialog rollouts on a mental model of teammate (ABOT)
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APPROACH
Modeling AMENTAL:

ACoPY: ABOT replica (performance upper bound)
AMImMmIC: Same architecture, trained on ABOT samples
Dialog Rollouts:
Reward Estimation via finite-sample approximation
Minimize Bayes Risk under QBOT’S beliefs
Sample candidate questions, images, answers

Marginalize over beliefs using AMENTAL

Pick question with .
max expected qy = al"ngtIlaX
reward

Marginalize over beliefs

Algorithm 1 Selecting Pragmatic Questions Via Dialog Rollouts
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function PRAGMATIC-QUESTION-SELECTION(q;)
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@, af ~mola | go0ya0,- -5 qi—1,01-1) > Decode multiple likely questions

return argmax RolloutEstimate(q}) > Select g; with greatest expected reward
end function
function ROLLOUTESTIMATE(g;)
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I,...,Ip ~ Gt_l(ft‘llqg, A0y -5 Qt—1,04—1) > Sample likely source images

form € {1,...,M} do

forne {1,...,N} do
a;"" ~ mar(as | Imyqo, @0, - - -5 Gt) > Sample answer given ¢; and I,

It

m,n 4— argmax Gt(It|q0,a0, ..

L qrya;"") > Update Q-BOT’s prediction

lgt,a;
T T4+ (Ilq Qs Im) > Aggregate the reward
end for
end for
return 7/ M N > Return approximate expected reward

end function

PRELIMINARY RESULTS

Metric: Rank percentile over dialog rounds
Baseline: PRETRAINED (no mental modeling)
Cheat Setting: “Cheat” with GT target image
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Real World: Expectation under QBOT’S beliefs

92%
91%
90%

%
%
%
%
%
%
%
— AMIMIC
% ACOPY

—— PRETRAINED

Percentile

Dlalog Round

Challenges
Estimating rewards is a bottleneck

Scaling up approximation is expensive

Takeaways
Pragmatic inference can in theory provide
an alternative to fine-tuning with RL
But in presence of information assymetry,

accurately estimating reward in hard
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